ORIE 5355

Lecture 7: Recommendations — from predictions
to decisions

Nikhil Garg

Announcements

* Quiz 1 due Sunday
* HW 2 released on website

PollEv.com/nikhilgarg713

Plan for next few weeks

e Day 2 of recommendations module today
 Start on Algorithmic pricing next week Monday
* In person guest lecture next Wednesday 9/24

* Virtual guest lecture Monday 9/29

https://pollev.com/nikhilgarg713

Last time: Prediction (filling in missing entries)

Avatar LOTR Matrix Pirates

wee] 0.2
0.5 0.3
ol ().2 1

David O . 4

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

Questions on prediction?

What to do with predictions? Naive method

Train a single matrix factorization model using some data (what data?)
=1 have predictions for each item and each user
For example, predict rj; = u; - v;

For each user i, simply recommend the best item
argmaX]- u; - Uj
(Or K best items)

Issues with naive method

* Capacities
What if you only have 5 of item j, and everyone likes item j?

* Multi-sided preferences
Recommendations in freelancing markets (workers matched with clients),
dating apps, volunteer platforms, etc

* Challenges in recommending sets of items
* Diversity of items recommended

* Behavioral effects? Recommending one item makes another item more
popular

Today: going from predictions =2 recommendations

An example

* In the homework, we
ask you to first
recommend using the
“naive” method of just
recommending best
prediction for each user

* You’ll observe a plot like
the following

Number of items in bin

[

e
L
i

[
=

ll}l .

ll}':l .

] 50 100 150 200 250 300
Number of times recommended

Dealing with capacity constraints

Overview

* What's the challenge, exactly?

* Solving an “easier” problem: “maximum weight matching in a
bipartite graph”

* Insights from the easier problem to real-life applications

The challenge

* In many (non-online-media) settings, you are recommending “items”
with capacity constraints:
* You have a finite number of each item in your warehouse
* An AirBnb can only be booked by one customer at a time
* Workers can’t work for every client; a client can only hire 1 person
* People on dating apps — can’t talk to everyone

* If you ignore these capacity constraints, then everyone may be
recommended the same (limited) item

Some people will be left out

* (How) should you factor in capacity in your recommendations?

The challenge, formally (simple version)

* You have N users and M items, but only 1 copy of each item
* You want to recommend 1 item j(i) to each user i
* Each user 1 will consume the that you recommend them

* You want to maximize the sum of predicted ratings of
consumed items

2.1 Tij (i)
* However, each item can only be recommended once
j(i) #j(i") unlessi =1’

Solving the simple case
/~ __ N

It turns out that this
simple case is called
“maximum weight
matching”

Draw a graph with users
on one side and items on
the other

OSA | Simulation and FPGA-Based
Implementation of Iterative Parallel
Schedulers for Optical Interconnection

https://www.osapublishing.org/jocn/abstract.cfm?uri=jocn-9-4-C76
https://www.osapublishing.org/jocn/abstract.cfm?uri=jocn-9-4-C76
https://www.osapublishing.org/jocn/abstract.cfm?uri=jocn-9-4-C76
https://www.osapublishing.org/jocn/abstract.cfm?uri=jocn-9-4-C76
https://www.osapublishing.org/jocn/abstract.cfm?uri=jocn-9-4-C76
https://www.osapublishing.org/jocn/abstract.cfm?uri=jocn-9-4-C76

Solving the simple case

It turns out that this
simple case is called
“maximum weight
matching”

Draw a graph with users
on one side and items on
the other

Find the “matching” that
maximizes sum of edge
weights

scipy.optimize.linear
sum assignment —
SciPy v1.7.1 Manual

p

\\ /I"':'Iauimum Weighte?h

Matching

70

Users ltems

2
@ 11

©

o

Implementation of Iterative Parallel
Schedulers for Optical Interconnection

https://www.osapublishing.org/jocn/abstract.cfm?uri=jocn-9-4-C76
https://www.osapublishing.org/jocn/abstract.cfm?uri=jocn-9-4-C76
https://www.osapublishing.org/jocn/abstract.cfm?uri=jocn-9-4-C76
https://www.osapublishing.org/jocn/abstract.cfm?uri=jocn-9-4-C76
https://www.osapublishing.org/jocn/abstract.cfm?uri=jocn-9-4-C76
https://www.osapublishing.org/jocn/abstract.cfm?uri=jocn-9-4-C76
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html

Insights from the simple case

In general, the actual solution might
be combinatorial —a complex
function of all the joint preferences

e Some users are not matched with
their most preferred item!

e Some items are not matched with
the user that likes it the most!

* If a user likes multiple items
similarly, maybe they get their 2"
choice

* |f only 1 user likes some item, make
sure that item and user are
matched

-

/r;1_ 5:imum WEigtha\

Matching
Users ltems
0

@ @
H———®

& 9

OSA | Simulation and FPGA-Based

Implementation of Iterative Parallel

Schedulers for Optical Interconnection

Networks (osapublishing.org)

https://www.osapublishing.org/jocn/abstract.cfm?uri=jocn-9-4-C76
https://www.osapublishing.org/jocn/abstract.cfm?uri=jocn-9-4-C76
https://www.osapublishing.org/jocn/abstract.cfm?uri=jocn-9-4-C76
https://www.osapublishing.org/jocn/abstract.cfm?uri=jocn-9-4-C76
https://www.osapublishing.org/jocn/abstract.cfm?uri=jocn-9-4-C76
https://www.osapublishing.org/jocn/abstract.cfm?uri=jocn-9-4-C76

Challenges in using max weight matchings

* Everyone doesn’t show up at once
New users come in tomorrow — have to leave items for them

* You can’t “match” people, only recommend them items
Someone may not consume the item!

e “Capacity” constraints are also soft
* New items are shipped to warehouse all the time
* Maybe you can spend more money to expedite shipment

* Computational constraints in rerunning large scale max weight
matchings with every new user

What to do in practice

* Finding an “great” solution requires a lot of careful data science +
modeling work

e Some reasonable heuristics:

“Batching”: If you don’t have to give recommendations immediately, wait for
some number of users to show up and solve max weight matching (for example,
every hour)

“Index” policies: For each user, create a “score” for each item and just choose
recommend the item(s) with the highest score(s)

Index policies

* We want a score (index) between each item j and user i: s;;
* Then, for each item, pick the item with the max score: argmax Sij

* We've already seen an example: if the only thing that matters is
predicted rating, then s;; = 1;;

 Why index policies?
* They're efficient: for each user, only need to consider their scores
* They can be explained to users
* All information about other users is contained in how score is constructed

Constructing index policies

What matters in constructing an index policy?
* The higher the ratings by other users for an item, the smaller s;; should be
* The less capacity C; left for the item, the smaller s;; should be

oo

where «;, f are some (learned) parameters over time
a;: Item is “special” and should be over-recommended
[: Relative importance of capacity. (f = 0 means ignore capacity)
Many possible score functions! Should be application specific

An example score function

Capacity constraints lessons

* If you just recommend each user their highest predicted scores, then
you might not be globally efficient

* Even if you can’t implement it, taking intuition from the “optimal”
solution is often valuable

* Index policies: even if “optimal” solution requires combinatorial
constraints, “practical” solution can decompose the problem

Multi-sided preferences

Multi-sided preferences

* In many modern online markets, both sides have preferences

Freelancing markets (workers matched with clients), dating apps, volunteer
platforms, etc

* A match only happens if both sides like each other
And have capacity...

The challenge, formally (simple version)

* You have N workers and N clients

* Each worker can only work with 1 client; each client only hires 1
worker

* Each side has preferences (predicted ratings) over the other
side
* You want to create “good” matches

 Good for who? Workers? Clients? Some combination?

 Easier goal: create “stable” matches

“Stable matching” in 1 slide

 Stable matching:

* Given rank order preferences from each
person on each side

* Match the sides such that matches are
“stable”: No potential pair wants to abandon
their current partners for each other.

* Efficient to find: “Gale-Shapley algorithm”

e Used to allocate:

Medical students to residencies
Students in NYC to high schools

Unive

ties

Stu

Q.
D
-
r—=

Challenges in using stable matching

Same as from using maximum weight matchings

Everyone doesn’t show up at once
New users come in tomorrow — have to leave items for them
You can’t “match” people, only recommend them items
Someone may not consume the item!
“Capacity” constraints are also soft
* New items are shipped to warehouse all the time

* Maybe you can spend more money to expedite shipment
Computational constraints in rerunning large scale stable matchings with every new user

Just more complicated with both sides now having preferences

Intuition from stable matching to
recommendations

What matters in constructing an index policy?
* The higher the ratings by other workers/clients, the smaller s;; should be

* If either worker i or client j has been recommended to many other people in
the past, the smaller s;; should be

Equivalent of “capacity”
* Now, both i’s rating for j and j’s rating for i matter

* From stable matching: both i and j matter — one-sided high score can’t “make
up” for the other side being a low score

An example score function

. “J""ijcjﬁ aiTjiCiB
Sij = min | ——,——=
Tj ri

Diversity in recommendations

Diversity of recommendations

* If you do the naive method and
recommend multiple items to each
user, then you’re not going to
recommend a diverse set of items

=
o
=

 Why? If you have a single user vector
u;, then if two items j and k both
have large dot products u; - v; and
u; - v, then they are likely to be
similar, v; = vy,

=
o
L

Pair recommendation freq
-]
2

0.0 0.2 0.4 0.6 0.8
ltem pair vector similarity

With the Movielens dataset and
recommending 2 items to each user. The
more similar 2 items are, the more likely
they are to be recommended together
compared to their “marginal” distributions

Improving diversity of recommendations

Many possible approaches
* Create a “short list” of items based on just g

a diverse set from the short Ilst
* Pre-select topics and then most relevant

within each topic gmuom aﬂ' ~ LS

mﬁu 4 __if Trapgne

e Start from most relevant item, filter other
items that are too similar to items already
recommended

Other challenges

* Showing diverse items
e 2 sided fairness?

* What if your recommendations aren’t “final”? The user has choice
after your recommendations

 What about if your data is biased in various ways?

* Effects on societal level consumption?
* |s everyone consuming the same content? (Winners take all?)
e Or are we all consuming very personalized content? (Filter bubbles?)

Summary of recommendations

There are 3 steps to building a recommendation system:

* Choose the data that you will use
What does the data imply about people’s opinions and future desires?

* Train @ model to predict ratings between pairs of items and users
Different approaches (item- and user similarity, matrix factorization)
Can also combine approaches

* Recommend items based on predictions and other concerns
Capacity constraints, diversity, fairness considerations, long-term objectives

Questions?

	ORIE 5355�Lecture 7: Recommendations – from predictions to decisions
	Announcements
	Last time: Prediction (filling in missing entries)
	Questions on prediction?
	What to do with predictions? Naïve method
	Issues with naïve method
	An example
	Dealing with capacity constraints
	Overview
	The challenge
	The challenge, formally (simple version)
	Solving the simple case
	Solving the simple case
	Insights from the simple case
	Challenges in using max weight matchings
	What to do in practice
	Index policies
	Constructing index policies
	Capacity constraints lessons
	Multi-sided preferences
	Multi-sided preferences
	The challenge, formally (simple version)
	“Stable matching” in 1 slide
	Challenges in using stable matching
	Intuition from stable matching to recommendations
	Diversity in recommendations
	Diversity of recommendations
	Improving diversity of recommendations
	Other challenges
	Summary of recommendations
	Questions?

